Задачи к спецпрактикуму

«Расчетные методы химической термодинамики», весенний семестр 2007 г.

I. Химические равновесия (THERMOBASE, EQUICALC, FACT)

- 1. Рассчитайте равновесный состав смеси 1 моля Cu_2S , 0.1 моля O_2 , 0.6 моля N_2 при 1200 К и давлении 1 атм; указать
 - а) компоненты и составляющие вещества, использованные при расчете,
 - б) состав газовой фазы ($P_i > 10^{-10}$ атм)
 - в) фазы, присутствующие в равновесной смеси в количествах больше 10^{-4} моля Как отразится на составе равновесной смеси
 - а) увеличение количества азота (0.7 и 0.9 моля).
 - б) увеличение температуры до 1800 К
- 2. Рассчитайте равновесный состав смеси 1 моля FeS, 0.2 молей O_2 при 500 К и давлении 2 атм; указать
 - а) компоненты и составляющие вещества, использованные при расчете,
 - б) состав газовой фазы ($P_i > 10^{-10}$ атм)
 - в) фазы, присутствующие в равновесной смеси в количествах больше 10^{-4} моля Построить график зависимости мольной доли веществ в газовой и твердой фазе в зависимости от количества кислорода.
- Проанализируйте состав равновесной смеси MoO₂ и CO при соотношении реагентов 1:1 и 1:10 в интервале температур 300 – 3300 К (постройте соответствующие графики).
 Определите, при каком соотношении MoO₂ и CO₂ наблюдается практически полное восстановление оксида при 1200 К.
- 4. Покажите, как влияет увеличение а) температуры, б) давления, в) присутствие инертного газа на равновесный состав смеси 3 молей водорода и 1 моля азота. Интервал температур 300–100 К, давлений 1–1000 атм, количества инертного газа 1 10 молей.
- 5. Оцените температуру кипения серы, если считать, что пар состоит только из а) мономерных форм, б) в паре присутствуют S, S_4 , в) все возможные формы (перечислить их)
- 6. Оцените влияние давления и состава на температуру горения смеси водорода и кислорода. Интервал давлений 1- 500 атм, соотношения реагентов (0.1÷3)H₂: 1 O₂. Определите, при каком соотношении реагентов наблюдается максимальная температура горения при 100 атм.

II. Фазовые равновесия (решить по одной задаче из каждого пункта)

A

- 1. Энергия Гиббса твердого раствора $A_{1-x}B_x$ описывается уравнением $G(x,T)=(1-x)G^{\circ}_A+xG^{\circ}_B+RT\{(1-x)\ln(1-x)+x\ln x\}+x(1-x)\{(a_{00}+a_{01}T+a_{02}T(1-\ln T)+a_{10}x\}$ Выведите формулы для расчета химических потенциалов компонентов, температурных зависисмостей энтальпии, энтропии и теплоемкости образования $A_{1-x}B_x$ из твердых компонентов.
- 2. Энергия Гиббса твердого раствора $A_{1-x}B_x$ описывается уравнением $G(x,T)=(1-x)G^o_A+xG^o_B+RT\{(1-x)\ln(1-x)+x\ln x\}+x(1-x)\{(a_{00}+a_{02}T(1-\ln T)+a_{10}x+a_{11}T\,x\}$ Выведите формулы для расчета химических потенциалов компонентов, температурных зависисмостей энтальпии, энтропии и теплоемкости образования $A_{1-x}B_x$ из твердых компонентов.

B.

Задача решается в аналитическом виде

- 1. Рассчитать кривую ликвидуса для соединения GaAs, если известно, что у этого соединения $T_{\rm m} = 1511 \; {\rm K}, \; S_{\rm m} = 8.374 \cdot R$, избыточная энергия Гиббса жидких растворов $\{(1-x){\rm Ga} + x{\rm As}\}$ описывается зависимостью $G^{\rm ex}(x,T) = R \cdot T \cdot x \cdot (1-x) \cdot (2597/T 4.61)$.
- 2. В таблице приведены значения избыточной энергии Гиббса образования жидких сплавов $In_{1-x}Sb_x$ при 900 К. Рассчитайте линию ликвидуса для соединения InSb, если известно, что температура его плавления $T_{\rm m}=800$ К, $\Delta H_{\rm m}=5746$ кал/моль

x(Sb)	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
$G^{\rm ex}$, кал/моль	-364	-657	-848	-934	-928	-844	-694	-493	-257
$In_{1-x}Sb_{x} (\pm 80)$									

С. Программа PhD_ru

1. Варьируя численные значения параметров взаимодействия, получите возможные варианты фазовых диаграмм («сигара», с эвтектикой, с верхним и нижним азеотропом, расслаивание в конденсированной фазе и т.д.).

Контрольные задачи

1. Рассчитайте фазовую диаграмму системы Pd - W, если известны энергии Γ иббса плавления компонентов (Дж моль $^{-1}$) (стабильными при давлении 1 атм являются Pd-fss и W-bss)

 $G_m (Pd,fss) = 15230.9 - 8.36864*T$

 $G_m(W, bss) = 30545.0 - 8.36864*T$

 $G_m (Pd, bss) = 9607.2 - 11.71610*T$

 $G_m (W,fss) = -20061.0 + 8.99629 *T$

В таблице приведены значения избыточных энергий Гиббса жидких растворов (Дж моль-1):

T, K	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
3300	4495	7991	10488	11987	12486	11987	10488	7991
3100	4298	7641	10029	11462	11940	-	-	-
2900	4102	7292	-	1	1	1	-	-

и избыточные энергии Гиббса твердых растворов на основе Pd и W (Дж моль⁻¹)

		Pd-	fss		W-bss			
x(W)	0,05	0,1	0,15	0,2	0,95	0,96	0,98	
1700	723,1	1370,1	1941,0	2435,8	1625,6	1314,2	670,8	
1500	564,6	1069,8	1515,5	1901,8	1486,6	1201,8	613,4	
1300	406,1	769,4	1090,0	1367,8	1347,6	1089,4	556,0	

2. Рассчитайте фазовую диаграмму системы Se - Те если известны энергии Гиббса плавления компонентов (Дж моль $^{-1}$)

$$G_m(Se) = 59909.718 - 1352.494119*T + 227.7601389*T*ln(T) - 414.512131e-3*T^2 + +134.537758e-6*T^3 - 2326646/T$$

 $G_m(Te) = 17222.341-23.770345*T - 4.31979e-19*T^7$

избыточные энергии Гиббса жидких растворов (Дж моль⁻¹)

T, K	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
700	-157	-294	-406	-486	-530	-531	-484	-1368
650	-197	-365	-498	-592	-640	-	-	-
600	-236	-435	-590	-	-	-	-	-

и избыточные химические потенциалы компонентов твердых растворов (Дж моль-1)

μ_1	0,4	0,5	0,6	0,7	0,8	0,9
600	_	_	-357	-486	-635	-803
500	-138	-216	-311	-423	-553	-699

μ_2	0,1	0,2	0,3	0,4	0,5	0,6	0,7
550	-751	-594	-454	-334	-232	-148	-83

В верхних строчках таблиц указаны мольные доли второго компонента

3. Рассчитайте фазовую диаграмму системы As - Ge если известны энергии Гиббса плавления компонентов (Дж моль $^{-1}$)

$$G_{\rm m}$$
 (Ge) = 36945-30.54*T

$$G_m(As) = 24874-23.01*T,$$

энтальпии смешения жидких растворов при 1150 К (Дж моль-1):

x(As)	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
$\Delta_{\mathrm{mix}} \mathrm{H}$	-767	-1462	-1882	-2172	-2284	-2066	-1919	-1462

В твердом состоянии компоненты взаимно нерастворимы. Точность определения значений энтальпий смешения не лучше 5 % от абсолютного значения функции.

Энергии Гиббса образования фаз GeAs и GeAs₂ (на моль фазы):

$$\Delta_t G^0(GeAs) = -3036 - 18.02*T - 4.314e - 3*T^2 + 7.57e - 7*T^3 - 87456/T + 2.91*T*ln(T)$$

$$\Delta_f G^o (GeAs_2) = -705.3 - 37.81*T - 5.527e - 3*T^2 + 5.046e - 7*T^3 - 62174/T + 5.666*T*ln(T)$$

Постройте график температурной зависимости теплоемкости GeAs от 300 до 900 К.

4. Рассчитайте фазовую диаграмму системы Cd - Zn если известны энергии Гиббса плавления компонентов (кал моль $^{-1}$)

$$G_m(Cd) = 1460-2.46*T$$

$$G_m(Zn) = 1765-2.55*T$$

и активности кадмия в расплаве при 680 К:

x(Cd)	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
a(Cd)	0,915	0,845	0,796	0,753	0,709	0,664	0,597	0,493	0,313

и активности компонентов твердых растворов при 540 К

x(Cd)	0,01	0,02	0,03	0,04	0,05
a(Cd)	0,990	0,981	0,973	0,965	0,958

x(Cd)	0,95	0,96	0,97	0,98	0,99
a(Zn)	0,959	0,966	0,973	0,981	0,990

Погрешность определения активности составляет около 2 %.