

Уравнения состояния конденсированной фазы: обзор

Термическое и калорическое УС

$$f(P, V, T) = 0$$

$$U = U(T, V)$$

$$dV = \left(\frac{\partial V}{\partial T}\right)_{p} dT + \left(\frac{\partial V}{\partial p}\right)_{T} dp$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

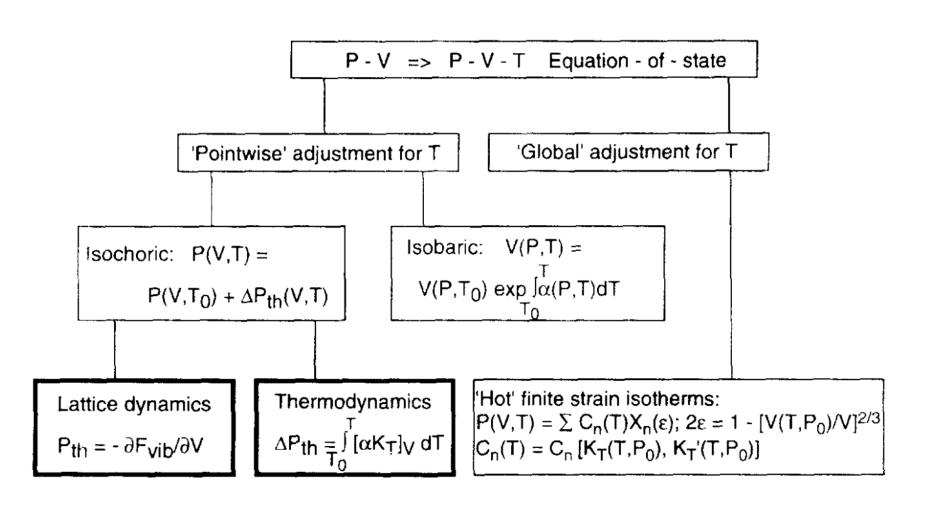
Некоторые соотношения:

Также dH, dF, dG....

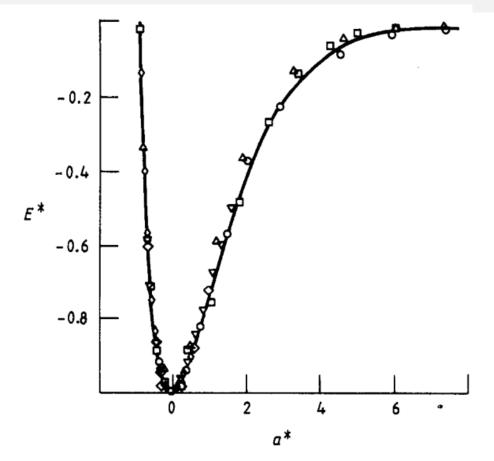
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{P}$$

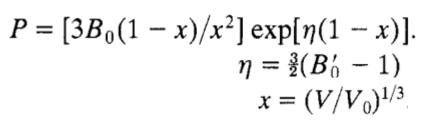
Модуль сжатия
$$K_T=V\left(rac{\partial^2 \mathcal{F}}{\partial V^2}
ight)_{TT}=-V\left(rac{\partial P}{\partial V}
ight)_T$$

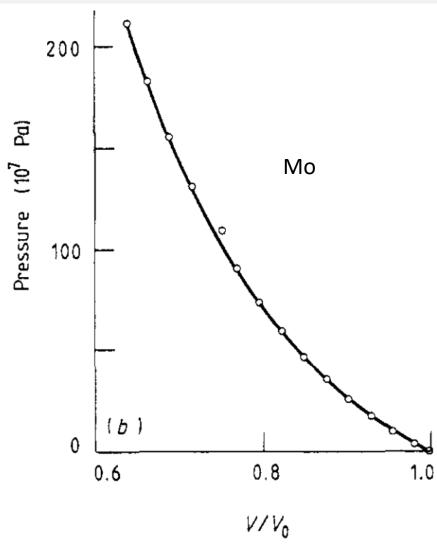
$$\left(\frac{\partial P}{\partial T}\right)_{V} = \alpha K_{T} = -\frac{\partial}{\partial V} \left[\left(\frac{\partial \mathcal{F}}{\partial T}\right)_{V} \right]_{T}$$



Изотермические P-V: УС Виньета







Изотермические P-V: УС Мурнагана

Теория конечных деформаций: вместо закона Гука используется предположение о том, что недеформированные и деформированные конфигурации существенно различаются

$$K=K_0+K_0'P$$

$$rac{dV}{V} = -rac{dP}{K_0 + K_0'P}.$$

$$P(V) = rac{K_0}{K_0'} \left(\left(rac{V_0}{V}
ight)^{K_0'} - 1
ight)$$

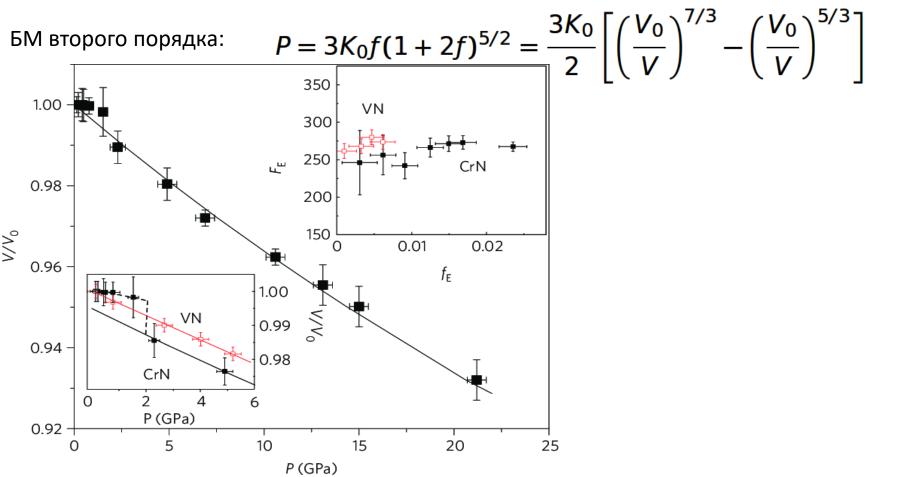
$$E(V) = E_0 + rac{K_0 V}{K_0'} \left(rac{(V_0/V)^{K_0'}}{K_0'-1} + 1
ight) + 1$$

материал	Ko	Ko'
NaF	46,5	5,28
NaCl	24,0	5,39
NaBr	19,9	5,46
Nal	15,1	5,59
MgO	156	4,7
Кальцит	75,27	4,63
- Магнезит	124,73	3,08
Карбид кремния	248	4,0

Изотермические P-V: УС Бёрча-Мурнагана

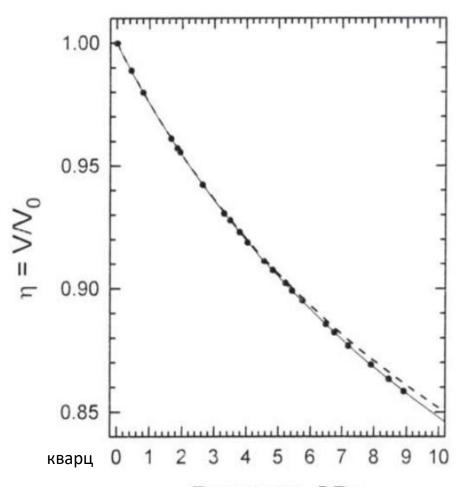
$$F = a + bf + cf^{2} + df^{3} + \dots$$

$$\frac{V_{0}}{V} = (1 + 2f)^{3/2}$$



Изотермические P-V: УС Бёрча-Мурнагана

БМ третьего порядка:
$$P = \frac{3K_0}{2} \left[\left(\frac{V_0}{V} \right)^{7/3} - \left(\frac{V_0}{V} \right)^{5/3} \right] \left\{ 1 - \xi \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right] \right\}$$



$$\xi = \frac{3}{4}(4 - K_0')$$

$$E(V) = rac{9V_0B_0}{16} \left\{ \left[\left(rac{V_0}{V}
ight)^{rac{2}{3}} - 1
ight]^3 B_0' +
ight.$$
 $\left. \left[\left(rac{V_0}{V}
ight)^{rac{2}{3}} - 1
ight]^2 \left[6 - 4 \left(rac{V_0}{V}
ight)^{rac{2}{3}}
ight]
ight\}$

УС Бёрча-Мурнагана и учет температуры

Строят изотерму при высоких температурах, подбирают V_{T} , K_{T} , K_{T}

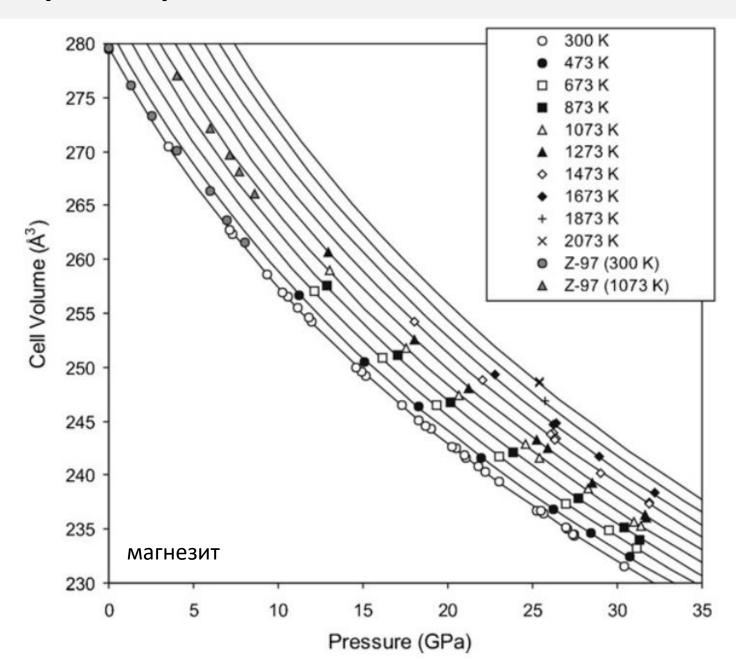
Представляют

К' обычно предполагают независящей от температуры

езависящей от температуры
$$K_{0}(T) = K_{0}(T_{0}) + \left(T - T_{0}\right) \left(\frac{\partial K}{\partial T}\right)_{P} \qquad V_{0}(T) = V_{0}(T_{0}) \exp \int_{T_{0}}^{T} \alpha(T) dT$$

$$P = \frac{3K_{0}}{2} \left[\left(\frac{V_{0}}{V}\right)^{7/3} - \left(\frac{V_{0}}{V}\right)^{5/3} \right] \left\{ 1 - \xi \left[\left(\frac{V_{0}}{V}\right)^{2/3} - 1 \right] \right\}$$

Пример



Термодинамические расчеты ΔPth

$$\Delta P_{\text{th}} = P_{\text{th}}(V,T) - P_{\text{th}}(V,T_0) = \int_{T_0}^{T} [\alpha K_T]_V dT$$

В простейшем случае $\Delta P_{th} = \alpha K_T \Delta T$

На самом деле $lpha K_{T}$ зависит от температуры и давления!

$$\Delta P_{\text{th}} = \int_{T_0}^T \left[\alpha K_T \right] (P_O, T) dT + \overline{(\partial K_T / \partial T)_V} \left\{ -\ln(V/V_0) (T - T_0) + \int_{T_0}^T \int_{T_0}^T \alpha dT dT \right\}$$

Расчеты ΔPth из кристаллической решетки

Основано на модели Дебая:

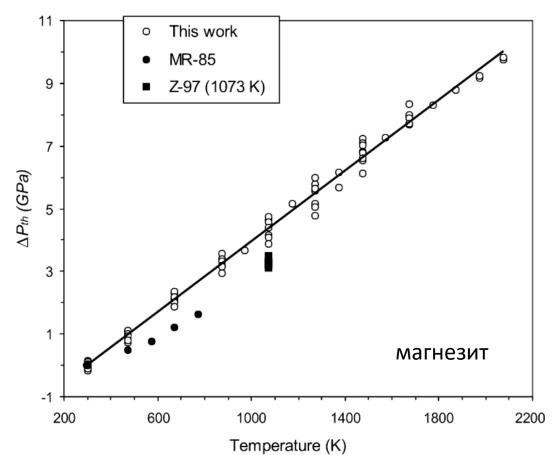
$$E_{th} = \frac{9nR}{x^3} \int_0^x \frac{\xi^3}{\exp \xi - 1} d\xi$$

$$X=\theta/T$$

$$\Delta P_{th} = rac{\gamma(V)}{V} \Delta E_{th}[\, heta(V), \, T\,] \qquad heta = heta_0 \exp\left(rac{\gamma_0 - \gamma}{q}
ight) \qquad \gamma = \gamma_0 \left(rac{V}{V_0}
ight)^q$$
 - Параметр Грюнайзена

$$\theta = \theta_0 \exp\left(\frac{\gamma_0 - \gamma}{q}\right)$$

$$\gamma = \gamma_0 \left(\frac{V}{V_0} \right)^q$$
 - Параметр Грюнайзена



В этой работе: подобранные параметры q = -1,14, $y_0 = 0.98, \theta_0 = 430K$

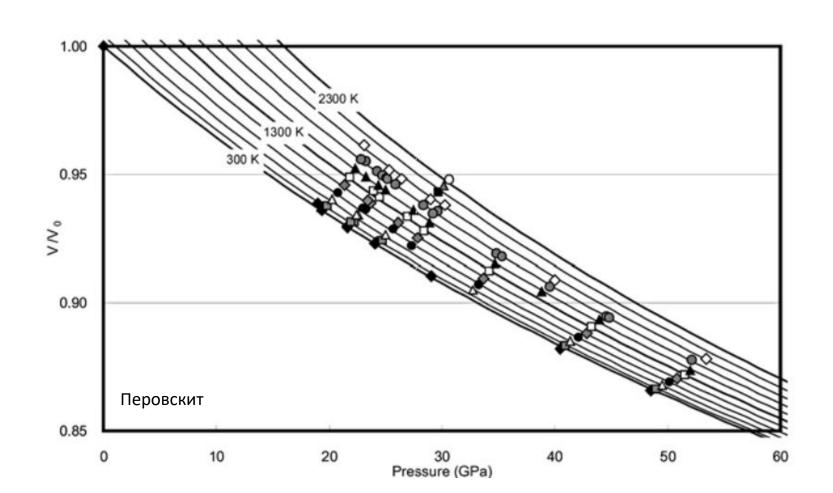
Пример

В этой работе: θ_0 =1030 из

калориметрии

Подобранные параметры:

 $q = 1.7, Y_0 = 2,6$



Дебай-Грюнайзен и расчеты теплоемкости

$$\Delta P_{th} = \frac{\gamma(V)}{V} \Delta E_{th} [\theta(V), T]$$

$$\alpha K_T = \left(\frac{\partial p}{\partial T}\right)_V = \gamma \frac{C_{v,vib}}{V} \qquad C_{p,vib} = C_{v,vib} + TV\alpha^2 K_T = C_{v,vib} (1 + \alpha \gamma T)$$

$$\begin{array}{c} 70 \\ 60 \\ 50 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

$$\begin{array}{c} 70 \\ 60 \\ \hline \\ 0 \end{array}$$

T (K)

И еще один способ

$$F = U_0 + E_0(V) + F_{th}(V, T) - F_{th}(V, T_0) + F_e(V, T) - F_e(V, T_0) + F_{anh}(V, T) - F_{anh}(V, T_0)$$

$$F_{th}(V,T) = m_1 RT \ln \left(1 - \exp \frac{-\Theta_1}{T} \right) + m_2 RT \ln \left(1 - \exp \frac{-\Theta_2}{T} \right) - \frac{3}{2} nRe_0 x^g T^2 - \frac{3}{2} nRa_0 x^m T^2.$$

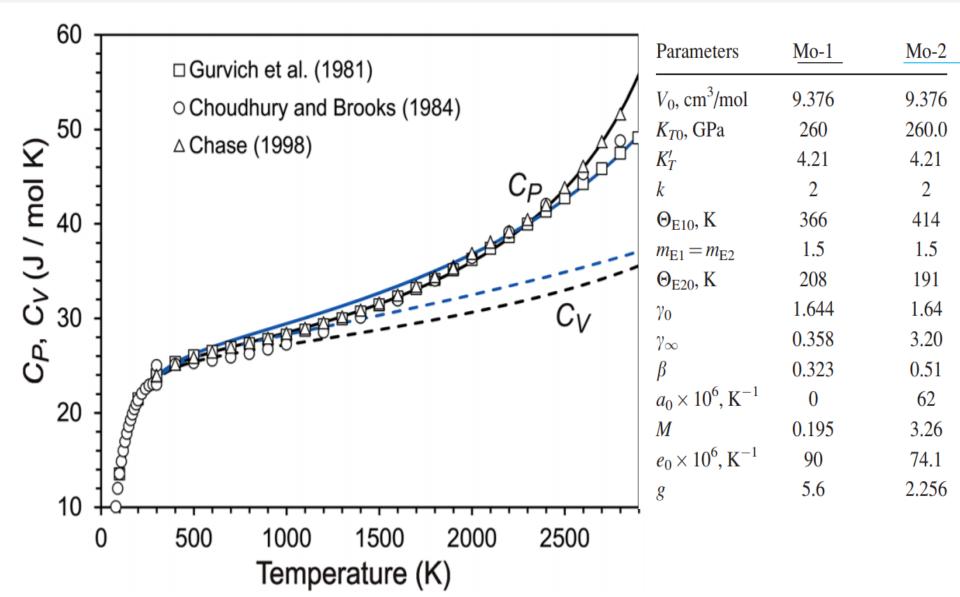
 m_i - статистический вес і осциллятора, e_0 - электронный вклад в энергию, a_0 - вклад в энергию от ангармонизма, $m = (\partial \ln a/\partial \ln V)_T$, $g = (\partial \ln x/\partial \ln V)_T$

Если $\theta_1 = \theta_2$, то

$$E_{th} = F_{th} + TS = 3nR \left[\frac{\Theta}{\exp(\Theta/T) - 1} \right] + \frac{3}{2} nRe_0 x^g T^2 + \frac{3}{2} nRa_0 x^m T^2.$$

$$C_V = 3nR \left[\left(\frac{\Theta}{T} \right)^2 \frac{\exp(\Theta/T)}{\left[\exp(\Theta/T) - 1 \right]^2} \right] + 3nRe_0 x^g T + 3nRa_0 x^m T$$

И еще один способ



K. Litasov et al. J. Appl. Phys. 2013

ЛАБОРАТОРИЯ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ МГУ ИМЕНИ М.В.ЛОМОНОСОВА

Спасибо за внимание!

ЛАБОРАТОРИЯ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ МГУ ИМЕНИ М.В.ЛОМОНОСОВА

Table 1. Model parameters for the equations of state of NaCl-B2, Solid Ne, Au, and Pt				
Parameters	NaCl-B2*	Ne*	Au [†]	Pt‡
V ₀ , Å ³	41.35	88.967	67.850(4)	60.38(1)
Kot, GPa (Vinet)	26.86(2.90)	1.16(14)	167	277
K'ot (Vinet)	5.25(26)	8.23(31)	6.00(2)	5.08(2)
K_{OT} , GPa (B-M)	30.69(2.90)	1.43(14)	167	277
K'_{OT} (B-M)	4.33(26)	8.02(31)	5.77(2)	4.95(2)
θ ₀ , Κ	290	75.1	170	230
γο,	1.70	2.05	2.97(3)	2.72(3)
q ₀	0.5(3)	0.6(3)	0.6(3)	0.5(5)

ЛАБОРАТОРИЯ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ МГУ ИМЕНИ М.В.ЛОМОНОСОВА

EOS	Chemical potential
Murnaghan	$\mu^{Mur}(T,p) = \mu(T,p_0) +$
(Gibbs)	$V_0(\frac{K_0+K_0'p_0}{K_0'-1})[(\frac{K_0+K_0'p}{K_0+K_0'p_0})^{(\frac{K_0'-1}{K_0'})}-1]$
Murnaghan	$\mu^{Mur}(T,V) = \mu(T,V_0) +$
(Helmholtz)	$\frac{K_0}{K_0'}(V(\frac{V}{V_0})^{-K_0'} + K_0'(V - V_0) - V)/(1 - K_0')$
Birch-Murnaghan	$\mu^{B-M}(T,V) = \mu(T,V_0) - \frac{9}{2}K_0V_0\left[\frac{1}{8}(K'_0 - 4)(\frac{V}{V_0})^{-2} + (\frac{7}{4} - \frac{3}{8}K'_0)(\frac{V}{V_0})^{-\frac{4}{3}} + (2 - \frac{3}{8}K'_0)(\frac{V}{V_0})^{-\frac{2}{3}} + (\frac{49}{12} - \frac{5}{6}K'_0)\right]$
Vinet	$\mu^{Vin}(T,V) = \mu(T,V_0)$ $+9K_0V_0\left[-\frac{2}{3(K'_0-1)}\right]$ $\exp\left[\frac{3}{2}(K'_0-1)(1-(\frac{V}{V_0})^{\frac{1}{3}})\right](1-(\frac{V}{V_0})^{\frac{1}{3}})$ $+\frac{4}{9(K'_0-1)^2}\exp\left[\frac{3}{2}(K'_0-1)(1-(\frac{V}{V_0})^{\frac{1}{3}})\right]-\frac{4}{9(K'_0-1)^2}$

ЛАБОРАТОРИЯ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ

$$\left[\alpha K_T\right](V,T) = \left[\alpha K_T\right] \left[V(P_0,T),T\right] - \int_{V(P_0,T)}^{V} (\partial K_T/\partial T)_V \mathrm{dln}V = \\ = \left[\alpha K_T\right] \left[V(P_0,T),T\right] - \overline{(\partial K_T/\partial T)_V} \mathrm{ln} \left[V/V(P_0,T)\right] = \left[\alpha K_T\right] (P_0,T) - \\ \overline{(\partial K_T/\partial T)_V} \mathrm{ln} \left[V_0/V(P_0,T)\right] - \overline{(\partial K_T/\partial T)_V} \mathrm{ln} (V/V_0)$$
 Подставляем

$$\Delta P_{\text{th}} = \int_{T_0}^{T} \left[\alpha K_T \right] (P_0, T) dT - \overline{(\partial K_T / \partial T)_V} \int_{T_0}^{T} \ln \left[V_0 / V(P_0, T) \right] dT - \overline{(\partial K_T / \partial T)_V} \ln (V / V_0) (T - T_0)$$

$$\ln \left[V(P_0, T) / V_0 \right] = \int_{T_0}^{T} \alpha dT$$

$$\Delta P_{\text{th}} = \int_{T_0}^T \left[\alpha K_T \right] (P_O, T) dT + \overline{(\partial K_T / \partial T)_V} \left\{ -\ln(V/V_0)(T - T_0) + \int_{T_0}^T \int_{T_0}^T \alpha dT dT \right\}$$