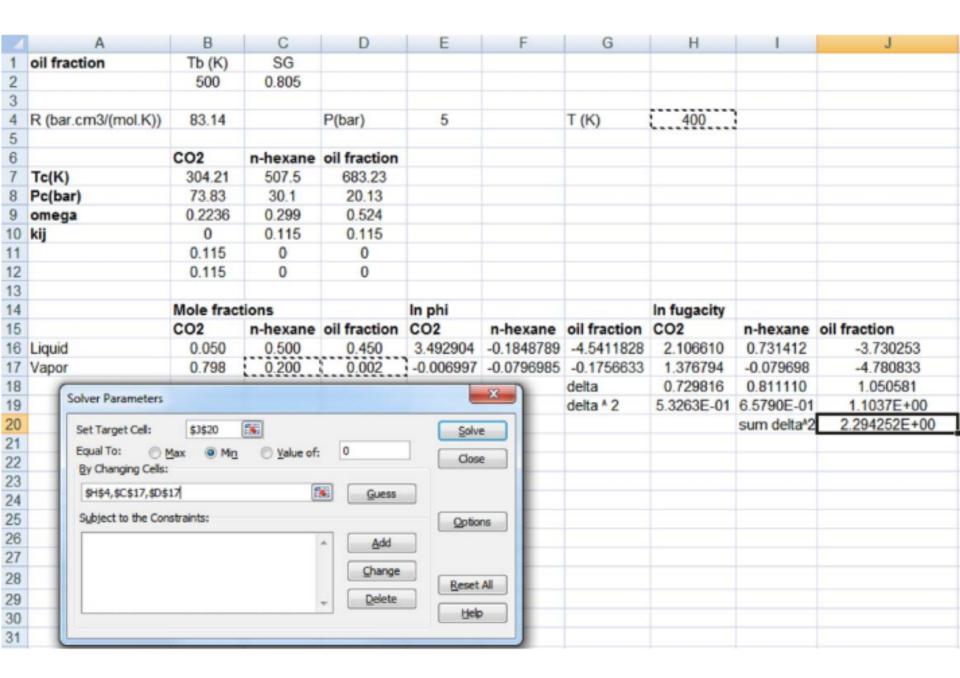
# European Symposium on Applied Thermodynamics May 18-21, 2017, Bucharest, Romania




#### XSEOS

# Thermodynamic Properties using Excess Gibbs Free Energy Models and Equations of State

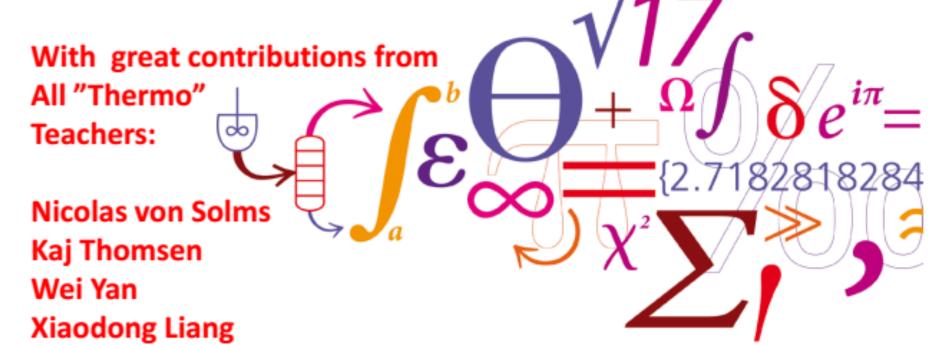
|        | Excess Gibbs free energy                                                                                                             | Equations of state                                                                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Models | Margules 2-,3-,4-suffix Regular solution theory Flory-Huggins Wilson TK-Wilson NRTL UNIQUAC UNIFAC UNIFAC Modified UNIFAC (Dortmund) | van der Waals Redlich-Kwong Soave-Redlich-Kwong (SRK) Peng-Robinson (PR) PR, quadratic mixing rule for b Stryjek-Vera Predictive SRK (PSRK) Mattedi-Tavares-Castier (MTC) |

| 4  | A                   | В               | C        | D            | E      | F        | G            | Н           | 1                        | J            |
|----|---------------------|-----------------|----------|--------------|--------|----------|--------------|-------------|--------------------------|--------------|
| 1  | oil fraction        | Tb (K)          | SG       |              |        |          |              |             |                          |              |
| 2  |                     | 500             | 0.805    |              |        |          |              |             |                          |              |
| 3  |                     |                 |          |              |        |          |              |             |                          |              |
| 4  | R (bar.cm3/(mol.K)) | 83.14           |          | P(bar)       | 5      |          | T (K)        | 400         |                          |              |
| 5  |                     |                 |          |              |        |          |              |             |                          |              |
| 6  |                     | CO <sub>2</sub> | n-hexane | oil fraction |        |          |              |             |                          |              |
| 7  | Tc(K)               | 304.21          | 507.5    |              |        |          |              |             |                          |              |
| 8  | Pc(bar)             | 73.83           | 30.1     |              |        |          |              |             |                          |              |
| 9  | omega               | 0.2236          | 0.299    |              |        |          |              |             |                          |              |
| 10 | kij                 | 0               | 0.115    | 0.115        |        |          |              |             |                          |              |
| 11 |                     | 0.115           | 0        | 0            |        |          |              |             |                          |              |
| 12 |                     | 0.115           | 0        | 0            |        |          |              |             |                          |              |
| 13 |                     |                 |          |              |        |          |              |             |                          |              |
| 14 |                     | Mole frac       | tions    |              | In phi |          |              | In fugacity |                          |              |
| 15 |                     | CO2             | n-hexane | oil fraction | CO2    | n-hexane | oil fraction | CO2         | n-hexane                 | oil fraction |
| 16 | Liquid              | 0.050           | 0.500    | 0.450        |        |          |              |             |                          |              |
| 17 | Vapor               | 0.798           | 0.200    | 0.002        |        |          |              |             |                          |              |
| 18 |                     |                 |          |              |        |          | delta        |             |                          |              |
| 19 |                     |                 |          |              |        |          | delta ^ 2    |             |                          |              |
| 20 |                     |                 |          |              |        |          |              |             | sum delta <sup>4</sup> 2 |              |



| 4        | A                   | В         | C        | D            | E         | F          | G            | Н           | 1                        | J            |
|----------|---------------------|-----------|----------|--------------|-----------|------------|--------------|-------------|--------------------------|--------------|
| 1        | oil fraction        | Tb (K)    | SG       |              |           |            |              |             |                          |              |
| 2        |                     | 500       | 0.805    |              |           |            |              |             |                          |              |
| 3        |                     |           |          |              |           |            |              |             |                          |              |
| 4        | R (bar.cm3/(mol.K)) | 83.14     |          | P(bar)       | 5         |            | T (K)        | 318.268697  |                          |              |
| 5        |                     |           |          |              |           |            |              |             |                          |              |
| 6        |                     | CO2       | n-hexane | oil fraction |           |            |              |             |                          |              |
| 7        | Tc(K)               | 304.21    | 507.5    | 683.23       |           |            |              |             |                          |              |
| 8        | Pc(bar)             | 73.83     | 30.1     | 20.13        |           |            |              |             |                          |              |
| 9        | omega               | 0.2236    | 0.299    | 0.524        |           |            |              |             |                          |              |
| 10       | kij                 | 0         | 0.115    | 0.115        |           |            |              |             |                          |              |
| 11       |                     | 0.115     | 0        | 0            |           |            |              |             |                          |              |
| 12<br>13 |                     | 0.115     | 0        | 0            |           |            |              |             |                          |              |
| 13       |                     |           |          |              |           |            |              |             |                          |              |
| 14<br>15 |                     | Mole frac | tions    |              | In phi    |            |              | In fugacity |                          |              |
| 15       |                     | CO2       | n-hexane | oil fraction | CO2       | n-hexane   | oil fraction | CO2         | n-hexane                 | oil fraction |
| 16       | Liquid              | 0.050     | 0.500    | 0.450        | 2.920869  | -2.394525  | -8.7905024   | 1.534575    | -1.478234                | -7.979572    |
| 17       | Vapor               | 0.949     | 0.051    | 8.82E-05     | -0.022062 | -0.1180327 | -0.2527156   | 1.534595    | -1.478200                | -7.979583    |
| 18<br>19 |                     |           |          |              |           |            | delta        | -0.000020   | -0.000034                | 0.000011     |
|          |                     |           |          |              |           |            | delta ^ 2    | 4.1184E-10  | 1.1570E-09               | 1.1473E-10   |
| 20       |                     |           |          |              |           |            |              |             | sum delta <sup>4</sup> 2 | 1.683616E-09 |

## Teaching Chemical Engineering Thermodynamics at DTU


How, Why, Impressions, Some Personal Thoughts

Georgios M. Kontogeorgis

Center for Energy Resources Engineering (CERE)

Department of Chemical and Biochemical Engineering

Technical University of Denmark



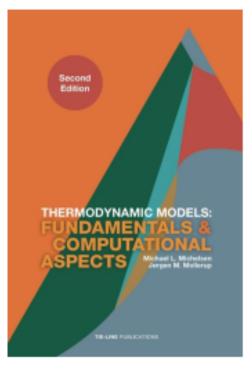
#### Teaching Thermodynamics – Content

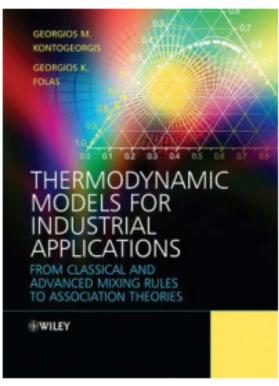
| Course<br>Number | Name                                                         | Content                                                                                                                                         |
|------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 28221<br>28322   | Chemical Eng. Thermodynamics                                 | Pure compounds, mixtures, cycles, flash<br>calculations, process applications e.g.<br>refrigeration, ternary LLE, acivity<br>coefficient models |
| 28423            | Phase Equilibria for non-ideal mixtures                      | Cubic and non-cubic EoS (SAFT, CPA),<br>mixing rules for cubic EoS, polymers,<br>environmental thermodynamics,<br>electrolytes                  |
| 28909            | Thermodynamic models: Fundamentals and Computational aspects | Computational methods : PT flash,<br>Multiphase flash, stability analysis,<br>chemical equilibrium                                              |
| 28928            | Electrolyte Thermodynamics                                   | Electrolytes fundamentals, phase diagrams and models                                                                                            |
| 28917            | Statistical Thermodynamics                                   | Fundamentals, CS EoS, Monte Carlo simulations, SAFT                                                                                             |
|                  |                                                              |                                                                                                                                                 |
|                  |                                                              |                                                                                                                                                 |

#### Teaching Thermodynamics – Special Issues

| Course<br>Number | Name                                                               | Special Issues                                                                      | Comments                                     |
|------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|
| 28221<br>28322   | Chemical Eng. Thermodynamics                                       | Use of excel modules No written examination – only reports                          | Own teaching<br>material + one other<br>book |
| 28423            | Phase Equilibria for non-<br>ideal mixtures                        | Use of SPECS                                                                        | Own teaching material                        |
| 28909            | Thermodynamic models:<br>Fundamentals and<br>Computational aspects | Own coding (Fortran,<br>MATLAB), many<br>externals incl.<br>Industrial participants | Own teaching material                        |
| 28928            | Electrolyte<br>Thermodynamics                                      | On-line course                                                                      | Own teaching material                        |
| 28917            | Statistical Thermodynamics                                         | Sometimes student-<br>defined projects                                              | Book from literature                         |

## Teaching Thermodynamics – Book

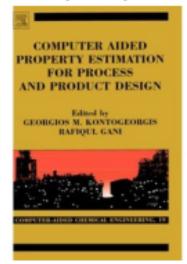

| Course Number  | Name                                                               | Book                                     |
|----------------|--------------------------------------------------------------------|------------------------------------------|
| 28221<br>28322 | Chemical Eng. Thermodynamics                                       | Elliott & Lira + Michelsen<br>Notes      |
| 28423          | Phase Equilibria for non-ideal mixtures                            | Kontogeorgis & Folas<br>K. Thomsen Notes |
| 28909          | Thermodynamic models:<br>Fundamentals and Computational<br>aspects | Michelsen & Mollerup                     |
| 28928          | Electrolyte Thermodynamics                                         | K. Thomsen Notes                         |
| 28917          | Statistical Thermodynamics                                         | McQuarrie                                |
|                |                                                                    |                                          |
|                |                                                                    |                                          |

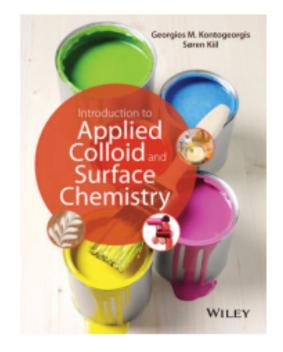

#### Books in Thermodynamics (by CERE staff)

Mostly used in the PhD Course:

28909 (2007)

28423 (2010)




Kaj Thomsen: Notes on Electrolyte Thermodynamics (very extensive) + special course with exercises

M.L.Michelsen: Notes on Applied Thermodynamics with exercises

(2004)





# DTU vs. Rest of the world (survey) – The Books

- We use Elliott and Lira like 14 US and none European universities – in one of the courses
- We do not use Sandler and have abandoned long time ago the most popular Smith-van Ness-Abbott book
- We recommend Prausnitz el al. in our advanced courses
- Atkins is used in Physical Chemistry courses not in thermodynamics
- We have lots of own books/own book material

## DTU vs. Rest of the world (survey)

- We have also "the two basic" courses but also a PhD course on computational aspects
- We have more additional specialized thermodynamic courses
- Not much on biological systems (similar to Europe)
- SM and MS to limited degree but we have them
- Similarly to others, no experimental element in the courses (despite much experimental thermodynamics in research)
- More PBL in USA than in Europe we also are based much on PBL